多元时间序列(MTS)分类在过去十年中获得了重要性,随着多个域中的时间数数据集数量的增加。目前的最先进的MTS分类器是一种重量级的深度学习方法,其仅在大型数据集上优于第二个最佳MTS分类器。此外,这种深入学习方法不能提供忠诚的解释,因为它依赖于后的HOC模型 - 无止性解释性方法,这可能会阻止其在许多应用中的应用。在本文中,我们展示了XCM,可解释的卷积神经网络用于MTS分类。 XCM是一种新的紧凑型卷积神经网络,其直接从输入数据中提取相对于观察变量的信息。因此,XCM架构在大小的数据集中实现了良好的泛化能力,同时通过精确地识别所观察到的变量和时间戳,允许完全利用忠实的后HOC模型特定的解释方法(梯度加权类激活映射)对预测很重要的数据。首先表明XCM在大型公共UEA数据集中优于最先进的MTS分类器。然后,我们说明了XCM如何在合成数据集上调和性能和解释性,并显示XCM对预测的输入数据的区域的区域更精确地识别,与当前的深度学习MTS分类器相比也提供忠诚的解释性。最后,我们介绍了XCM如何优于现实世界应用中最准确的最先进的算法,同时通过提供忠诚和更具信息性的解释来提高可解释性。
translated by 谷歌翻译
我们的研究旨在提出一种新的性能解释性分析框架来评估和基准机学习方法。框架详细介绍了一组特征,其系统化了现有机器学习方法的性能可解释性评估。为了说明框架的使用,我们将其应用于基准测试当前的最先进的多变量时间序列分类器。
translated by 谷歌翻译
我们解决了一个新的新兴问题,该问题正在加权图中找到最佳的单核匹配。\ cite {adma}在每次迭代中采样完整匹配的半频带版本,创建了一个算法,预期的遗憾匹配$ o(\ frac {l \ log(l)} {\ delta {\ delta} \ log(t))$带$ 2L $播放器,$ t $迭代和最小奖励差距$ \ delta $。我们分两个步骤减少了这一界限。首先,如\ cite {grab}和\ cite {unirank},我们在适当的图上使用预期奖励的无模式属性来设计算法,并遗憾地在$ o(l \ frac {1} {\ delta} {\ delta} \ \log(t))$。其次,我们表明,通过将焦点转移到主要问题`\ emph {用户$ i $比用户$ j $更好?}'这个遗憾变成$ O(l \ frac {\ delta}}^2} \ log(t))$,其中$ \ tilde {\ delta}> \ delta $源自比较用户的更好方法。一些实验结果最终表明这些理论结果在实践中得到了证实。
translated by 谷歌翻译
We are interested in understanding the underlying generation process for long sequences of symbolic events. To do so, we propose COSSU, an algorithm to mine small and meaningful sets of sequential rules. The rules are selected using an MDL-inspired criterion that favors compactness and relies on a novel rule-based encoding scheme for sequences. Our evaluation shows that COSSU can successfully retrieve relevant sets of closed sequential rules from a long sequence. Such rules constitute an interpretable model that exhibits competitive accuracy for the tasks of next-element prediction and classification.
translated by 谷歌翻译